一.缓存穿透(请求数据缓存大量不命中):

缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。

例如:下图是一个比较典型的cache-storage架构,cache(例如memcache, redis等等) + storage(例如mysql, hbase等等)架构,查一个压根就不存在的值, 如果不做兼容,永远会查询storage。

二. 危害:

对底层数据源(mysql, hbase, http接口, rpc调用等等)压力过大,有些底层数据源不具备高并发性。下载

例如mysql一般来说单台能够扛1000-QPS就已经很不错了(别说你的查询都是select * from table where id=xx 以及你的机器多么牛逼,那就有点矫情了)

例如他人提供的一个抗压性很差的http接口,可能穿透会击溃他的服务。

三. 如何发现:

我们可以分别记录cache命中数, storage命中数,以及总调用量,如果发现空命中(cache,storage都没有命中)较多,可能就会在缓存穿透问题。下载

注意:缓存本身的命中率(例如redis中的info提供了类似数字,只代表缓存本身)不代表storage和业务的命中率。

四. 产生原因以及业务是否允许?

产生原因有很多:可能是代码本身或者数据存在的问题造成的,也很有可能是一些恶意***、爬虫等等(因为http读接口都是开放的)

业务是否允许:这个要看做的项目或者业务是否允许这种情况发生,比如做一些非实时的推荐系统,假如新用户来了,确实没有他的推荐数据(推荐数据通常是根据历史行为算出),这种业务是会发生穿透现象的,至于业务允不允许要具体问题具体分析了。下载

五. 解决方法:

解决思路大致有两个,如下表。下面将分别说明

解决缓存穿透适用场景维护成本缓存空对象

1. 数据命中不高

2. 数据频繁变化实时性高

1.代码维护简单

2.需要过多的缓存空间

3. 数据不一致

bloomfilter或者压缩filter提前拦截

1. 数据命中不高

2. 数据相对固定实时性低

1.代码维护复杂

2.缓存空间占用少

1. 缓存空对象下载

(1). 定义:如上图所示,当第②步MISS后,仍然将空对象保留到Cache中(可能是保留几分钟或者一段时间,具体问题具体分析),下次新的Request(同一个key)将会从Cache中获取到数据,保护了后端的Storage。

(2) 适用场景:数据命中不高,数据频繁变化实时性高(一些乱转业务)

(3) 维护成本:代码比较简单,但是有两个问题:

第一是空值做了缓存,意味着缓存系统中存了更多的key-value,也就是需要更多空间(有人说空值没多少,但是架不住多啊),解决方法是我们可以设置一个较短的过期时间。

第二是数据会有一段时间窗口的不一致,假如,Cache设置了5分钟过期,此时Storage确实有了这个数据的值,那此段时间就会出现数据不一致,解决方法是我们可以利用消息或者其他方式,清除掉Cache中的数据。

(4) 伪代码:

Java代码下载

packagecom.carlosfu.service;

importorg.apache.commons.lang.StringUtils;

importcom.carlosfu.cache.Cache;

importcom.carlosfu.storage.Storage;

/**

*某服务

*

*@authorcarlosfu

*@Date2015-10-11

*@Time下午6:28:46

*/

publicclassXXXService{

/**

*缓存

*/

privateCachecache=newCache();

/**

*存储

*/

privateStoragestorage=newStorage();

/**

*模拟正常模式

*@paramkey

*@return

*/

publicStringgetNormal(Stringkey){

//从缓存中获取数据

StringcacheValue=cache.get(key);

//缓存为空

if(StringUtils.isBlank(cacheValue)){

//从存储中获取

StringstorageValue=storage.get(key);

//如果存储数据不为空,将存储的值设置到缓存

if(StringUtils.isNotBlank(storageValue)){

cache.set(key,storageValue);

}

returnstorageValue;

}else{

//缓存非空

returncacheValue;

}

}

/**

*模拟防穿透模式

*@paramkey

*@return

*/

publicStringgetPassThrough(Stringkey){

//从缓存中获取数据

StringcacheValue=cache.get(key);

//缓存为空

if(StringUtils.isBlank(cacheValue)){

//从存储中获取

StringstorageValue=storage.get(key);

cache.set(key,storageValue);

//如果存储数据为空,需要设置一个过期时间(300秒)

if(StringUtils.isBlank(storageValue)){

cache.expire(key,60*5);

}

returnstorageValue;

}else{

//缓存非空

returncacheValue;

}

}

}

2. bloomfilter或者压缩filter(bitmap等等)提前拦截下载

(1). 定义:如上图所示,在访问所有资源(cache, storage)之前,将存在的key用布隆过滤器提前保存起来,做第一层拦截,例如: 我们的推荐服务有4亿个用户uid, 我们会根据用户的历史行为进行推荐(非实时),所有的用户推荐数据放到hbase中,但是每天有许多新用户来到网站,这些用户在当天的访问就会穿透到hbase。为此我们每天4点对所有uid做一份布隆过滤器。如果布隆过滤器认为uid不存在,那么就不会访问hbase,在一定程度保护了hbase(减少30%左右)。下载

(2) 适用场景:数据命中不高,数据相对固定实时性低(通常是数据集较大)

(3) 维护成本:代码维护复杂,缓存空间占用少

第一是空值做了缓存,意味着缓存系统中存了更多的key-value,也就是需要更多空间(有人说空值没多少,但是架不住多啊),解决方法是我们可以设置一个较短的过期时间。

第二是数据会有一段时间窗口的不一致,假如,Cache设置了5分钟过期,此时Storage确实有了这个数据的值,那此段时间就会出现数据不一致,解决方法是我们可以利用消息或者其他方式,清除掉Cache中的数据。