C++语言学习(二十)——自定义内存管理一、统计类对象中成员变量的访问次数

mutable是为了突破const函数的限制而设计的,mutable修饰的成员变量将永远处于可改变的状态。mutable成员变量破坏了只读对象的内部状态,而const成员函数保证只读对象的状态不变性,因此mutable成员变量无法保证只读对象状态的不变性。

#include <iostream>using namespace std;class Test{public: Test():m_count(0) { } void setValue(const int value) { m_count++; m_data = value; } int getValue() { m_count++; return m_data; } int getValue()const { m_count++; return m_data; } int getCount()const { return m_count; }private: int m_data; mutable int m_count;};int main(int argc, char *argv[]){ Test test1; test1.setValue(100); cout << test1.getCount() << endl; const Test test2; test2.getValue(); cout << test2.getCount() << endl; return 0;}

上述代码使用mutable修饰成员变量m_count,确保在const函数内部也可以改变其值,但mutable破坏了只读对象状态的不变性,所以不推荐。

#include <iostream>using namespace std;class Test{public: Test():m_count(new int(0)) { } void setValue(const int value) { *m_count = *m_count + 1; m_data = value; } int getValue() { *m_count = *m_count + 1; return m_data; } int getValue()const { *m_count = *m_count + 1; return m_data; } int getCount()const { return *m_count; }private: int m_data; int* const m_count;};int main(int argc, char *argv[]){ Test test1; test1.setValue(100); cout << test1.getCount() << endl; const Test test2; test2.getValue(); cout << test2.getCount() << endl; return 0;}

上述代码使用指针常量统计访问成员变量的次数,不会破坏只读对象的状态不变性。

二、new/delete操作符重载1、new/delete操作符本质

new/delete的本质是C++预定义的操作符,C++语言规范对new/delete操作符做出了严格的规范:
A、new关键字用于获取足够的内存空间(默认为堆空间),在获取的空间中调用构造函数创建对象。
B、delete调用析构函数销毁对象,归还对象所占用的空间(默认为堆空间)。
C++语言中可以重载new/delete操作符,重载new/delete操作符的意义在于改变动态对象创建时的内存分配方式,可以将new创建的对象分配在栈空间、静态存储空间、指定地址空间。
new/delete操作符支持全局重载、局部重载,但不推荐对new/delete操作符进行全局重载,通常对new/delete操作符进行局部重载,如针对具体的类进行new/delete操作符重载。
new/delete操作符重载函数默认为静态函数,无论是否显示声明static关键字。

//static member function void* operator new(unsigned int size) { void* ret = NULL; /* ret point to allocated memory */ return ret; } //static member function void operator delete(void* p) { /* free the memory which is pointed by p */ }2、在静态存储区创建对象

#include <iostream>using namespace std;class Test{private: static const unsigned int COUNT = 4; static char c_buffer[]; static char c_map[]; int m_value;public: Test(int value = 0) { m_value = value; cout << "value : " << value << endl; } //static member function void* operator new (unsigned int size) { void* ret = NULL; for(int i = 0; i < COUNT; i++) { if( !c_map[i] ) { c_map[i] = 1; ret = c_buffer + i * sizeof(Test); cout << "succeed to allocate memory: " << ret << endl; break; } } return ret; } //static member function void operator delete (void* p) { if( p != NULL ) { char* mem = reinterpret_cast<char*>(p); int index = (mem - c_buffer) / sizeof(Test); int flag = (mem - c_buffer) % sizeof(Test); if( (flag == 0) && (0 <= index) && (index < COUNT) ) { c_map[index] = 0; cout << "succeed to free memory: " << p << endl; } } } int getValue()const { return m_value; }};char Test::c_buffer[sizeof(Test) * Test::COUNT] = {0};char Test::c_map[Test::COUNT] = {0};int main(int argc, char *argv[]){ cout << "===== Test Single Object =====" << endl; Test* pt = new Test(1); delete pt; cout << "===== Test Object Array =====" << endl; Test* pa[5] = {0}; for(int i=0; i<5; i++) { pa[i] = new Test(100 + i); cout << "pa[" << i << "] = " << pa[i] << endl; } for(int i=0; i<5; i++) { cout << "delete " << pa[i] << endl; if(pa[i] != NULL) { delete pa[i]; } } return 0;}

上述代码,new会创建Test对象到静态存储空间中,从打印结果可以知道new创建Test对象时先调用new操作符重载函数,在返回的空间中再调用Test构造函数。

3、在指定地址创建对象

在类中对new/delete操作符进行重载,在new操作符重载函数中返回指定的地址,在delete操作符重载函数中标记对应的地址可用。

#include <iostream>#include <string>#include <cstdlib>using namespace std;class Test{ static unsigned int c_count; static char* c_buffer; static char* c_map; int m_value;public: static bool SetMemorySource(char* memory, unsigned int size) { bool ret = false; c_count = size / sizeof(Test); ret = (c_count && (c_map = reinterpret_cast<char*>(calloc(c_count, sizeof(char))))); if( ret ) { c_buffer = memory; } else { free(c_map); c_map = NULL; c_buffer = NULL; c_count = 0; } return ret; } void* operator new (unsigned int size) { void* ret = NULL; if( c_count > 0 ) { for(int i=0; i<c_count; i++) { if( !c_map[i] ) { c_map[i] = 1; ret = c_buffer + i * sizeof(Test); cout << "succeed to allocate memory: " << ret << endl; break; } } } else { ret = malloc(size); } return ret; } void operator delete (void* p) { if( p != NULL ) { if( c_count > 0 ) { char* mem = reinterpret_cast<char*>(p); int index = (mem - c_buffer) / sizeof(Test); int flag = (mem - c_buffer) % sizeof(Test); if( (flag == 0) && (0 <= index) && (index < c_count) ) { c_map[index] = 0; cout << "succeed to free memory: " << p << endl; } } else { free(p); } } }};unsigned int Test::c_count = 0;char* Test::c_buffer = NULL;char* Test::c_map = NULL;int main(int argc, char *argv[]){ char buffer[12] = {0}; Test::SetMemorySource(buffer, sizeof(buffer)); cout << "===== Test Single Object =====" << endl; Test* pt = new Test; delete pt; cout << "===== Test Object Array =====" << endl; Test* pa[5] = {0}; for(int i=0; i<5; i++) { pa[i] = new Test; cout << "pa[" << i << "] = " << pa[i] << endl; } for(int i=0; i<5; i++) { cout << "delete " << pa[i] << endl; delete pa[i]; } return 0;}

上述代码中,可以在指定地址空间创建对象,也可以不指定地址空间,此时在堆空间创建对象。

4、在栈空间创建对象

#include <iostream>using namespace std;class Test{ int m_value;public: Test(int value = 0) { m_value = value; cout << "value : " << m_value << endl; cout << "this : " << this << endl; }};int main(int argc, char *argv[]){ Test test(100); //在栈空间创建对象 Test* pTest = new(&test) Test(1000); return 0;}上述代码中,可以使用new操作符的默认实现在栈空间创建对象。5、new[]/delete[]关键字

new[]/delete[]关键字与new/delete关键字完全不同,是一组全新的关键字。
new[]关键字用于创建动态对象数组,delete[]关键字用于销毁动态对象数组。new[]/delete[]关键字可以进行重载,用于优化内存管理方式。new[]关键字返回的空间大小通常大于预期的动态数组空间大小。

#include <iostream>#include <string>#include <cstdlib>using namespace std;class Test{ int m_value;public: Test(int value = 0) { m_value = value; } ~Test() { } void* operator new (unsigned int size) { cout << "operator new: " << size << endl; return malloc(size); } void operator delete (void* p) { cout << "operator delete: " << p << endl; free(p); } void* operator new[] (unsigned int size) { cout << "operator new[]: " << size << endl; return malloc(size); } void operator delete[] (void* p) { cout << "operator delete[]: " << p << endl; free(p); }};int main(int argc, char *argv[]){ Test* pt = NULL; pt = new Test; delete pt; pt = new Test[5]; delete[] pt; return 0;}

上述代码中,重载了new[]/delete[]关键字。