如何使用keras中keras.layers.merge
这篇文章主要为大家展示了如何使用keras中keras.layers.merge,内容简而易懂,希望大家可以学习一下,学习完之后肯定会有收获的,下面让小编带大家一起来看看吧。
旧版本中:
from keras.layers import merge
merge6 = merge([layer1,layer2], mode = 'concat', concat_axis = 3)
新版本中:
from keras.layers.merge import concatenate
merge = concatenate([layer1, layer2], axis=3)
补充知识:keras输入数据的方法:model.fit和model.fit_generator
1.第一种,普通的不用数据增强的
from keras.datasets import mnist,cifar10,cifar100(X_train, y_train), (X_valid, Y_valid) = cifar10.load_data() model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_valid, Y_valid), )
2.第二种,带数据增强的 ImageDataGenerator,可以旋转角度、平移等操作。
from keras.preprocessing.image import ImageDataGenerator(trainX, trainY), (testX, testY) = cifar100.load_data()trainX = trainX.astype('float32')testX = testX.astype('float32')trainX /= 255.testX /= 255.Y_train = np_utils.to_categorical(trainY, nb_classes)Y_test = np_utils.to_categorical(testY, nb_classes)generator = ImageDataGenerator(rotation_range=15, width_shift_range=5./32, height_shift_range=5./32)generator.fit(trainX, seed=0)model.fit_generator(generator.flow(trainX, Y_train, batch_size=batch_size), steps_per_epoch=len(trainX) // batch_size, epochs=nb_epoch, callbacks=callbacks, validation_data=(testX, Y_test), validation_steps=testX.shape[0] // batch_size, verbose=1)
以上就是关于如何使用keras中keras.layers.merge的内容,如果你们有学习到知识或者技能,可以把它分享出去让更多的人看到。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。