是不是很多伙伴都认为Python的语法简单,作为入门语言学起来非常简单?

很多伙伴说Python写出来的代码只要符合逻辑,不需要太多的学习即可,即可从一门其他语言跳来用Python写(当然这样是好事,谁都希望入门简单)。

于是我便记录一下,如果要学Python的话,到底有什么好学的。记录一下Python有什么值得学的,对比其他语言有什么特别的地方,有什么样的代码写出来更Pythonic。一路回味,一路学习。

什么是修饰器,为什么叫修饰器

修饰器英文是Decorator,

我们假设这样一种场景:古老的代码中有几个很是复杂的函数F1、F2、F3…,复杂到看都不想看,反正我们就是不想改这些函数,但是我们需要改造加功能,在这个函数的前后加功能,这个时候我们很容易就实现这个需求:

defhi():"""hifunc,假装是很复杂的函数"""return'hi'defaop(func):"""aopfunc"""print('beforefunc')print(func())print('afterfunc')if__name__=='__main__':aop(hi)

以上是很是简单的实现,利用Python参数可以传函数引用的特性,就可以实现了这种类似AOP的效果。

这段代码目前没有什么问题,接下来煎鱼加需求:需求为几十个函数都加上这样的前后的功能,而所有调用这些函数地方也要相应地升级。

看起来这个需求比较扯,偏偏这个需求却是较为广泛:在调用函数的前后加上log输出、在调用函数的前后计算调用时间、在调用函数的前后占用和释放资源等等。

一种比较笨的方法就是,为这几十个函数逐一添加一个入口函数,针对a函数添加一个a_aop函数,针对b函数添加一个b_aop函数…如此这样。问题也很明显:

工作量大代码变得臃肿复杂原代码有多处调用了这些函数,可以会升级不完全

于是接下来有请修饰器出场,修饰器可以统一地给这些函数加这样的功能:

defaop(func):"""aopfunc"""defwrapper():"""wrapperfunc"""print('beforefunc')func()print('afterfunc')returnwrapper@aopdefhi():"""hifunc"""print('hi')@aopdefhello():"""hellofunc"""print('hello')if__name__=='__main__':hi()hello()

以上aop函数就是修饰器的函数,使用该修饰器时只要在待加函数上一行加@修饰器函数名即可,如实例代码中就是@aop。

加上了@aop后,调用新功能的hi函数就喝原来的调用一样:就是hi()而不是aop(hi),也意味着所有调用这些函数的地方不需要修改就可以升级。

简单地来说,大概修饰器就是以上的这样子。

@是个什么

对于新手来说,上面例子中,@就是一样奇怪的东西:为什么这样子用就可以实现需求的功能了。

其实我们还可以不用@,这里换一种写法:

defhi():"""hifunc"""print('hi')defaop(func):"""aopfunc"""defwrapper():"""wrapperfunc"""print('beforefunc')func()print('afterfunc')returnwrapperif__name__=='__main__':hi()print('')hi=aop(hi)hi()

上面的例子中的aop函数就是之前说过的修饰器函数。

如例子main函数中第一次调用hi函数时,由于hi函数没叫修饰器,因此我们可以从输出结果中看到程序只输出了一个hi而没有前后功能。

然后加了一个hi = aop(hi)后再调用hi函数,得到的输出结果和加修饰器的一样,换言之:

@aop 等效于hi = aop(hi)

因此,我们对于@,可以理解是,它通过闭包的方式把新函数的引用赋值给了原来函数的引用。

有点拗口。aop(hi)是新函数的引用,至于返回了引用的原因是aop函数中运用闭包返回了函数引用。而hi这个函数的引用,本来是指向旧函数的,通过hi = aop(hi)赋值后,就指向新函数了。

被调函数加参数

以上的例子中,我们都假设被调函数是无参的,如hi、hello函数都是无参的,我们再看一眼煎鱼刚才的写的修饰器函数:

defaop(func):"""aopfunc"""defwrapper():"""wrapperfunc"""print('beforefunc')func()print('afterfunc')returnwrapper

很明显,闭包函数wrapper中,调用被调函数用的是func(),是无参的。同时就意味着,如果func是一个带参数的函数,再用这个修饰器就会报错。

@aopdefhi_with_deco(a):"""hifunc"""print('hi'+str(a))if__name__=='__main__':#hi()hi_with_deco(1)

就是参数的问题。这个时候,我们把修饰器函数改得通用一点即可,其中import了一个函数(也是修饰器函数):

fromfunctoolsimportwrapsdefaop(func):"""aopfunc"""@wraps(func)defwrap(*args,**kwargs):print('before')func(*args,**kwargs)print('after')returnwrap@aopdefhi(a,b,c):"""hifunc"""print('testhi:%s,%s,%s'%(a,b,c))@aopdefhello(a,b):"""hellofunc"""print('testhello:%s,%s'%(a,b))if__name__=='__main__':hi(1,2,3)hello('a','b')

这是一种很奇妙的东西,就是在写修饰器函数的时候,还用了别的修饰器函数。那也没什么,毕竟修饰器函数也是函数啊,有什么所谓。

带参数的修饰器

思路到了这里,煎鱼不禁思考一个问题:修饰器函数也是函数,那函数也是应该能传参的。函数传参的话,不同的参数可以输出不同的结果,那么,修饰器函数传参的话,不同的参数会怎么样呢?

其实很简单,修饰器函数不同的参数,能生成不同的修饰器啊。

如,我这次用这个修饰器是把时间日志打到test.log,而下次用修饰器的时候煎鱼希望是能打到test2.log。这样的需求,除了写两个修饰器函数外,还可以给修饰器加参数选项:

fromfunctoolsimportwrapsdefaop_with_param(aop_test_str):defaop(func):"""aopfunc"""@wraps(func)defwrap(*args,**kwargs):print('before'+str(aop_test_str))func(*args,**kwargs)print('after'+str(aop_test_str))returnwrapreturnaop@aop_with_param('abc')defhi(a,b,c):"""hifunc"""print('testhi:%s,%s,%s'%(a,b,c))@aop_with_param('pppppp')defhi2(a,b,c):"""hifunc"""print('testhi:%s,%s,%s'%(a,b,c))if__name__=='__main__':hi(1,2,3)print('')hi2(2,3,4)

同样的,可以加一个参数,也可以加多个参数,这里就不说了。

修饰器类

大道同归,逻辑复杂了之后,人们都喜欢将函数的思维层面抽象上升到对象的层面。原因往往是对象能拥有多个函数,对象往往能管理更复杂的业务逻辑。

显然,修饰器函数也有对应的修饰器类。写起来也没什么难度,和之前的生成器一样简单:

fromfunctoolsimportwrapsclassaop(object):def__init__(self,aop_test_str):self.aop_test_str=aop_test_strdef__call__(self,func):@wraps(func)defwrapper(*args,**kwargs):print('before'+self.aop_test_str)func()print('after'+self.aop_test_str)returnwrapper@aop('pppppp')defhi():print('hi')

看得出来,这个修饰器类也不过是多了个__call__函数,而这个__call__函数的内容和之前写的修饰器函数一个样!而使用这个修饰器的方法,和之前也一样,一样的如例子中的@aop('pppppp')。

过于无聊,还试了一下继承的修饰器类:

classsub_aop(aop):def__init__(self,sub_aop_str,*args,**kwargs):self.sub_aop_str=sub_aop_strsuper(sub_aop,self).__init__(*args,**kwargs)def__call__(self,func):@wraps(func)defwrapper(*args,**kwargs):print('before'+self.sub_aop_str)super(sub_aop,self).__call__(func)()print('after'+self.sub_aop_str)returnwrapper@sub_aop('ssssss','pppppp')defhello():print('hello')if__name__=='__main__':hello()

大家可以大胆猜测一下结果会怎样。。。